转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section3.html
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法。有关HBase系统配置级别的优化,可参考:。
下面是本文总结的第三部分内容:读表操作相关的优化方法。
3. 读表操作
3.1 多HTable并发读
创建多个HTable客户端用于读操作,提高读数据的吞吐量,一个例子:
static final Configuration conf = HBaseConfiguration.create(); static final String table_log_name = “user_log”; rTableLog = new HTable[tableN]; for (int i = 0; i < tableN; i++) { rTableLog[i] = new HTable(conf, table_log_name); rTableLog[i].setScannerCaching(50); }
3.2 HTable参数设置
3.2.1 Scanner Caching
hbase.client.scanner.caching配置项可以设置HBase scanner一次从服务端抓取的数据条数,默认情况下一次一条。通过将其设置成一个合理的值,可以减少scan过程中next()的时间开销,代价是scanner需要通过客户端的内存来维持这些被cache的行记录。
有三个地方可以进行配置:1)在HBase的conf配置文件中进行配置;2)通过调用HTable.setScannerCaching(int scannerCaching)进行配置;3)通过调用Scan.setCaching(int caching)进行配置。三者的优先级越来越高。
3.2.2 Scan Attribute Selection
scan时指定需要的Column Family,可以减少网络传输数据量,否则默认scan操作会返回整行所有Column Family的数据。
3.2.3 Close ResultScanner
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
3.3 批量读
通过调用HTable.get(Get)方法可以根据一个指定的row key获取一行记录,同样HBase提供了另一个方法:通过调用HTable.get(List<Get>)方法可以根据一个指定的row key列表,批量获取多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高而且网络传输RTT高的情景下可能带来明显的性能提升。
3.4 多线程并发读
在客户端开启多个HTable读线程,每个读线程负责通过HTable对象进行get操作。下面是一个多线程并发读取HBase,获取店铺一天内各分钟PV值的例子:
public class DataReaderServer { //获取店铺一天内各分钟PV值的入口函数 public static ConcurrentHashMapgetUnitMinutePV(long uid, long startStamp, long endStamp){ long min = startStamp; int count = (int)((endStamp - startStamp) / (60*1000)); List lst = new ArrayList (); for (int i = 0; i <= count; i++) { min = startStamp + i * 60 * 1000; lst.add(uid + "_" + min); } return parallelBatchMinutePV(lst); } //多线程并发查询,获取分钟PV值 private static ConcurrentHashMap parallelBatchMinutePV(List lstKeys){ ConcurrentHashMap hashRet = new ConcurrentHashMap (); int parallel = 3; List
> lstBatchKeys = null; if (lstKeys.size() < parallel ){ lstBatchKeys = new ArrayList
>(1); lstBatchKeys.add(lstKeys); } else{ lstBatchKeys = new ArrayList
>(parallel); for(int i = 0; i < parallel; i++ ){ List lst = new ArrayList (); lstBatchKeys.add(lst); } for(int i = 0 ; i < lstKeys.size() ; i ++ ){ lstBatchKeys.get(i%parallel).add(lstKeys.get(i)); } } List < ConcurrentHashMap >> futures = new ArrayList < ConcurrentHashMap >>(5); ThreadFactoryBuilder builder = new ThreadFactoryBuilder(); builder.setNameFormat("ParallelBatchQuery"); ThreadFactory factory = builder.build(); ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(lstBatchKeys.size(), factory); for(List keys : lstBatchKeys){ Callable< ConcurrentHashMap > callable = new BatchMinutePVCallable(keys); FutureTask< ConcurrentHashMap > future = (FutureTask< ConcurrentHashMap >) executor.submit(callable); futures.add(future); } executor.shutdown(); // Wait for all the tasks to finish try { boolean stillRunning = !executor.awaitTermination( 5000000, TimeUnit.MILLISECONDS); if (stillRunning) { try { executor.shutdownNow(); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } } catch (InterruptedException e) { try { Thread.currentThread().interrupt(); } catch (Exception e1) { // TODO Auto-generated catch block e1.printStackTrace(); } } // Look for any exception for (Future f : futures) { try { if(f.get() != null) { hashRet.putAll((ConcurrentHashMap )f.get()); } } catch (InterruptedException e) { try { Thread.currentThread().interrupt(); } catch (Exception e1) { // TODO Auto-generated catch block e1.printStackTrace(); } } catch (ExecutionException e) { e.printStackTrace(); } } return hashRet; } //一个线程批量查询,获取分钟PV值 protected static ConcurrentHashMap getBatchMinutePV(List lstKeys){ ConcurrentHashMap hashRet = null; List lstGet = new ArrayList (); String[] splitValue = null; for (String s : lstKeys) { splitValue = s.split("_"); long uid = Long.parseLong(splitValue[0]); long min = Long.parseLong(splitValue[1]); byte[] key = new byte[16]; Bytes.putLong(key, 0, uid); Bytes.putLong(key, 8, min); Get g = new Get(key); g.addFamily(fp); lstGet.add(g); } Result[] res = null; try { res = tableMinutePV[rand.nextInt(tableN)].get(lstGet); } catch (IOException e1) { logger.error("tableMinutePV exception, e=" + e1.getStackTrace()); } if (res != null && res.length > 0) { hashRet = new ConcurrentHashMap (res.length); for (Result re : res) { if (re != null && !re.isEmpty()) { try { byte[] key = re.getRow(); byte[] value = re.getValue(fp, cp); if (key != null && value != null) { hashRet.put(String.valueOf(Bytes.toLong(key, Bytes.SIZEOF_LONG)), String.valueOf(Bytes .toLong(value))); } } catch (Exception e2) { logger.error(e2.getStackTrace()); } } } } return hashRet; } } //调用接口类,实现Callable接口 class BatchMinutePVCallable implements Callable >{ private List keys; public BatchMinutePVCallable(List lstKeys ) { this.keys = lstKeys; } public ConcurrentHashMap call() throws Exception { return DataReadServer.getBatchMinutePV(keys); } }
3.5 缓存查询结果
对于频繁查询HBase的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询HBase;否则对HBase发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑LRU等常用的策略。
3.6 Blockcache
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能启动。默认BlockCache为0.2,而Memstore为0.4。对于注重读响应时间的系统,可以将 BlockCache设大些,比如设置BlockCache=0.4,Memstore=0.39,以加大缓存的命中率。
有关BlockCache机制,请参考这里:,,。